Cluster Analysis of the World Gross-Domestic Product Based on the Emergent Self-Organization of a Swarm

Feel free to contact me through www.deepbionics.org
Motivation

Problem: Separate data into similar groups -> Clustering

Goal: detect meaningful cluster structures

Solution: Project high-dimensional data in two dimensions and visualize as 3D landscape

All black data points equal one Cluster of Projected Points
Background

- Clusters can be of arbitrary shapes (structures) (1)
 - No generally accepted definition of clusters exists in the literature (2)
 - Number of clusters difficult to estimate
- Projection methods and clustering methods are separately used

Implicit assumptions about structures of data are made by

- Clustering criteria (3)
- Projection methods (besides ESOM) (4)
- Quality measures (QMs) for projection methods (4)
- Quality assessments for clustering methods in the case of unknown class labels (4), (5)

What happens if the structures in the data are unknown?

(1) [Jain/Dubes, 1988]; (2) [Hennig et al., 2015, p. 705]; (3) [Duda et al., 2001; Everitt et al., 2001; Handl et al., 2005; Theodoridis/Koutroumbas, 2009; Ultsch/Lötsch, 2016];
(4) [Thrun, 2017], (5) [Handl et al., 2005]
Challenges and Questions

- 27 Clustering algorithms on 15 datasets confirm hypothesis, see http://www.deepbionics.org/Projects/ClusteringAlgorithms.html

- Does the structure defined by a cluster algorithm lead to consistent insights

- How can a cluster analysis be performed on a data set of unknown structures without prior assumptions?

- Maybe the default parameter settings were incorrect?
 - How to choose the right parameter setting of more elaborated methods (e.g. t-SNE, Spectral Clustering)

=> Search for alternative concepts in literature

Introduction → Algorithm → Results → Conclusion
Concepts for Databionic Swarm

- Swarm Intelligence (1)
- Self-Organization
 - Swarms (2)
 - Self-organizing map (SOM), (3)
- Bionics (4)
 - Used in prior works (5)
- Applied Game Theory (6)
- Applied Emergence (6)

“the application of biological methods and systems found in nature”

(1) [Beni 1989]; (2) [Bonabeau/Dorigo et al., 1999]; (3) [Ultsch 1992];
(4) [Deneubourg 1991, Reynolds, 1987]; (5) [Herrmann 2007];
(6) [Thrun, 2018]: https://www.springer.com/la/book/9783658205393
What is Swarm Intelligence (SI)?

- In general the definition of intelligence is controversial (1) and complex (2).
- In the context of swarms, behavior and intelligence are used synonymously.
- **Collective behavior** generically denotes any behavior of agents in a system having *more than one agent* (3).
- Five principles of swarm behavior (4)

(1) [Legg/Hutter, 2007]; (2) [Zhong, 2010]; (3) [Cao et al., 1997];
(4) [Grosan et al., 2006; Reynolds, 1987].
Self-organization is defined by spontaneous pattern formation by a system itself, without responsibility of any determinate inside agent.

- Four basic ingredients for SO in a swarm (1)
- A swarm using SO should have more than 100 agents (2)

(1) [Bonabeau et al., 1999]; (2) [Beni, 2004]
Emergence

- An ability of a system
- The arising of novel and coherent properties during the process of self-organization (1)
- Four factors lead to emergence in swarm

Example: One H2O molecule
-> Wetness of Water

(1) [Goldstein 1999, Ultsch 1999, 2007]
Bionics of Databionic Swarm (DBS)

- Observation of Ants
 - Living in and moving on a flat toroidal surface, wearing one data point per agent (4)
 - Communication: Scent (3)
 - Smelling the surroundings of ones place (1)
 - DataBot moves to a free position, if it prefers the scent of the new position (2)
 - Preference through an application of Game theory (5)

References:
I. Projection with Pswarm (3)
 - Application of Self-Organization, Swarm Intelligence, Bionics and game theory, parameter-free

II. Visualization: topographic map with hypsometric tints
 - Emergence through a unsupervised artificial neural network, parameter-free
 - Results in 3D landscape generation and 3D printing (1)

III. Semi-automated Clustering on the visualization
 - U-matrix is approximation of Abstract Umatrix (2)
 which is based on Voronoi cells
 - Shortest Paths (Dijkstra) of Delaunay graph of projected points weighted with high-dimensional Distances used for a hierarchical clustering approach (3)

(1) [Thrun et al., 2016, Ultsch/Thrun 2017]; (2) [Lötsch/Ultsch 2014]; (3) [Thrun, 2018]
World Gross Domestic Product (GDP)

- PPP-converted GDP per capita (1) for the years from 1970 to 2010
- World GDP timeseries of 160 countries was logarithmized
- For the distances $D(l, j)$ the dynamic time warping (DTW) distances (2) were calculated using the R package dtw (3)
 - GMM has two modes
 -> Distances can be clearly separated in larger inter-cluster distances and smaller intra-cluster distances
 -> Clear distance structure

(1) [Leister, 2016]; (2) [Bernad & Clifford, 1996]; (3) [Giorgino, 2009]

https://cran.r-project.org/web/packages/AdaptGauss/index.html
Apply DBS to World GDP I

- Borders of the grid are cyclically connected with a periodicity
- Here we cut-out an Island
- Every Point symbolizes a country
- High-dimensional distances are visualized of the low dimensional projected points
- If the mountain is high the distances are large
- If the valley is low the distances are small
- Hypsometric tints: colors are height dependent

https://cran.r-project.org/web/packages/DatabionicSwarm/index.html
Apply DBS to World GDP II

Topographic Map:
- Valleys and basins indicate clusters
- Watersheds of hills and mountains indicate borderlines of clusters

⇒ **Number of Clusters is number of valleys!**

World GDP:
- High-Dimensional Disontinuites are still visible through hills and valleys
- One outlier

https://www.springer.com/la/book/9783658205393
https://cran.r-project.org/web/packages/DatabionicSwarm/index.html
External Verification of Cluster Homogeneity

- We are searching for similar countries
 -> Heatmap shows intra vers inter-cluster distances (cd)
 indicates that intra-cd are small and inter-cd large
 -> Silhouette plot indicates approx. spherical cluster structures

https://cran.r-project.org/web/packages/DataVisualizations/index.html
Geographical distribution

- Colors of countries in blue and green as in clustering
- Coherent geographical distribution of countries by clustering
- Priory cluster analysis on GDP datasets was performed for
 - Latin American countries (1) and European countries (2)

https://cran.r-project.org/web/packages/DataVisualizations/index.html
Do the clusters make sense?

- Explaining the cluster structure by CART
- Simple Rules can be extracted out of the tree.

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>DBS No.</th>
<th>Cluster No.</th>
<th>No. of Nations</th>
<th>Rules for the year 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1</td>
<td>66</td>
<td>66</td>
<td>GDP lower than 3469 U</td>
</tr>
<tr>
<td>R2</td>
<td>2</td>
<td>93</td>
<td>93</td>
<td>GDP higher than 3469 U</td>
</tr>
</tbody>
</table>
Discussion of Results

- First cluster consists mostly of African and Asian countries
- Second clusters of industrialized countries of predominantly Europe and America
- Outliers
 - Equatorial Guinea (in DBS)
 - Incorrectly classified countries Egypt and Micronesia (in CART)

-> GDP is sensitive by economic shocks (e.g., oil-price), number and the change of inhabitants

- Economic achievement of 157 countries was profoundly affected in the year 2001
 - Could be the crashing of airplanes into the World Trade Center
 -> World economy was experiencing its first synchronized global recession in a quarter-century (1)

(1) [Makinen, 2002, p. 17]
Databionic swarm

- DBS is a flexible and robust clustering framework
 - Three interchangeable modules
 - Swarm-based technique combining swarm intelligence, self-organisation and emergence
 - Combined with a human-understandable visualization technique
- Parameter-free in projection and visualization
- Clustering/absence of clusters is verified by visualization (1)
- Number of cluster can be estimated by visualization
- Detects meaningful structure in the data
 - Emerging structures lead to new, unknown but useful knowledge in data

(1) https://www.springer.com/la/book/9783658205393

https://cran.r-project.org/web/packages/DatabionicSwarm/index.html
Drawbacks

- Stochastic projection (trial depending)
 ⇒ These problems exist also in most other common methods

- Realm of Big Data is not discussed here due to time complexity of Pswarm

If prior knowledge of the data set to be analyzed is available, then a projection method that is appropriately chosen with regard to the structures that should be preserved can outperform Pswarm
Outlook/Further Research

- If prior knowledge available
 - => Projection based clustering (1)
 - => Or use appropriate clustering method with
topographic map for verification

- DBS Algorithm will be parallelized in future to be used Cloud Computing

(1) [Thrun/Ultsch, 2017b]
https://cran.r-project.org/web/packages/ProjectionBasedClustering/index.html
Thank you for listening. Any questions?
Example: Leukemia data set

- 7747 gene expressions of 554 subjects (1)
- Prior classification is made available by domain expert
- Data structures of this high-dimensional data set is unknown

Results of some projection methods:

Results of some clustering methods:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Ward</th>
<th>SL</th>
<th>kMeans</th>
<th>MoG</th>
<th>PAM</th>
<th>Spectral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy in %</td>
<td>100</td>
<td>80.1</td>
<td>76.53</td>
<td>Not Computable</td>
<td>78.3</td>
<td>59.0</td>
</tr>
</tbody>
</table>

https://cran.r-project.org/web/packages/ProjectionBasedClustering/index.html

(1) [Haferlach et al., 2010]
Apply DBS to Leukemia data set

- ~7500 Dimensions visualized in 3 Dimensions
- High-Dimensional Discontinuities still visible through hills and valleys
- Types of leukemia diagnoses and healthy patients visible in different colors of projected points
- Accuracy of 99.6%
- Two outliers

-> Possible problem in diagnosis
Key Idea’s for DBS

- Clustering method
 - Should be based on visualization of the projection
 - Visualization based on Umatrix for ESOM (1)
 => Allows to estimates number of clusters

- Projection method
 - Annealing scheme with the decreasing neighborhood radius for DataBots (2)
 - No objective function, no parameters

Apply

I. Physics:
 - Given problem -> First search for symmetry
 - Solution results in parameter reduction and neighborhood definition

II. Game Theory (3)
 - Requirements for preference (using I.)
 - Annealing scheme (without parameters)

Goal: separate data points into similar groups ("colors")

(1) [Ultsch 2003]; (2) [Kämpf/Ultsch, 2006]; (3) [Nash 1951]
Game Theory in Detail

- [Neumann/Morgenstern, 1953, p. 84]: A game is defined as a scenario with n players $i=1, \ldots, n$ in which each player makes a choice.

- Let a game G be defined by n players associated with n non-empty sets Π_1, \ldots, Π_n, where every set Π_i represent all choices made by player i; then, the pay-off function is defined as
 \[p = (p_1, \ldots, p_n): \Pi_1 \times \cdots \times \Pi_n \rightarrow \mathbb{R}^n \]

- Mixed strategies may include the five main principles of collective behavior.
Mixed strategies

- In a game with \(n \) players, let the \(k \) choices of player \(i \) be defined by a set \(\Pi_i = \{\pi^i_1, \ldots, \pi^i_\alpha, \ldots, \pi^i_k\} \), where \(\pi^i_\alpha \) indicates the \(i^{th} \) player’s \(\alpha^{th} \) choice,

then, a mixed strategy \(s_j(i) \in S_i \) for player \(i \) is defined by

\[
s_j(i) = \sum_{\alpha=1}^{k(i)} c_\alpha(i) \pi_\alpha(i)
\]

where

\[
\sum_{\alpha=1}^{k(i)} c_\alpha(i) = 1 \quad \text{and all} \quad c_\alpha(i) \geq 0.
\]
„Every Finite Game Has an Equilibrium Point“ \(^{(1)}\)

Let \(t_j(i) \in S_i\) be the mixed strategy that maximizes the payoff for player \(i\); then, the Nash equilibrium is defined as

\[
p_i\left(s(1), \ldots, s(i-1), t_j(i), s(i+1), \ldots, s(n)\right) = \max_{t_j(i) \in S_i} p_i\left(s(1), \ldots, s(n)\right)
\]

if and only if this equation holds for every \(i\) \([\text{Nash, 1951}]\)

- For a weak Nash equilibrium multiple mixed strategies for the same person that result in the same maximal payoff \(p_i\),
- For a strong Nash equilibrium, even a coalition of players cannot further increase their payoffs by simultaneously changing their strategies
- A Nash equilibrium is not necessarily unique

\(^{(1)}\) [Nash, 1951, p 288]
SI for Unsupervised Machine Learning

1. Particle Swarm Optimization (PSO)
 - Bionics: Bird flocking -> agents communicate directly
 - Normally applied as a population-based search algorithm [Rana et al., 2011]
 - Rule-based classification models, e.g. AntMiner, or as an optimizer within other learning algorithms

2. Ant Colony Optimization (ACO)
 - Agents communicate through stigmergy
 - Applied to the task of sorting [Martens et al., 2011]
 - Ant Based Clustering (ABC)

3. Artificial Behavior based on DataBots

- And some special cases like
 - Prey model [Stephens/Krebs, 1986], [Giraldo et al., 2011]
Four basic ingredients for SO in a swarm

1. **Positive feedback**
 - promotes a creation of convenient structures and helps to stabilize them

2. **Negative feedback**
 - promotes a creation of convenient structures and helps to stabilize them

3. **Amplification of fluctuations**
 - Fluctuations defined as errors, random movements and task switching

4. **Multiple interactions.**
 1. For swarm behavior to emerge, multiple interactions are required

[Bonabeau et al., 1999]
Five principles of swarm behavior

1. **Homogeneity**
 1. every agent has the same behavior model

2. **Locality**
 1. the motion of each agent is only influenced by its nearest neighbors;

3. **Velocity matching**
 1. every agent attempts to match the velocity of nearby flock mates

4. **Collision Avoidance**
 1. every agent avoids collisions with nearby agents

5. **Flock Centering**
 1. the agents attempt to stay close to the neighboring agents

[Grosan et al., 2006]
Factors leading to Emergence

- The three factors leading to emergence in swarms are
 1. Randomness
 - Uses a source of random numbers in its calculations (non-determinism) [Ultsch, 2007].
 2. Temporal and structural unpredictability
 => No objective function.
 3. Multiple non-linear interactions among many agents
 - Many elementary processes are required
 - Nonlinearity means that adding or removing interactions among agents or any agents themselves results in behavior that is linearly unpredictable
 - e.g. Adding/Removing DataBots

- For applications, the existence of emergence is irrelevant. Even if emergent phenomena can be causally explained, they can still be used in the future.
Example for Emergence: Schelling’s Model

- The Schelling model consists of a grid of square patches.
- Agents are located on this landscape, initially at random, with no more than one on any patch.

[Schelling, 1969, 1971]
Mild preference of the agent’s own color, results in segregation

- Each agent has a tolerance parameter. Green agents are “happy” when the ratio of greens to reds in its Moore neighborhood (the eight immediately adjacent cells or patches) is more than its tolerance
- Unhappy agents are allowed to move

Settings:
Similar 66
Red/Blue: 50/50
Empty: 10
Size 36x36
Delay 11ms
Schelling’s Modell

Behaviour Explanation of emergence of Ghetos:

- Initially integrated communities changed to full segregation
- Even if the people’s happiness rules expressed only a mild preference for having neighbors of their own type
Abstract U-distances

- Delaunay Graph: Graph of Voronoi cells
 - A region corresponds to each BestMatch consisting of all points closer to that BestMatch than to any other
- Delaunay Path: Number of edges between two BestMatches
- Dijkstra Shortest Paths of Delaunay graph weighted with high dimensional Distances

Reason:
- U-matrix is approximation of Abstract Umatrix (1), which is based on Voronoi cells
- Height of Voronoi-Borders = Euclidean High-dimensional distance of data

(1) [Lötsch/Ultsch 2014]
Why a swarm based approach for cluster analysis?

1. No objective function
 ⇒ possibility for emergence

2. Redundant decentralized algorithm
 ⇒ New data can be added incrementally
 ⇒ Swarm techniques are known for their properties of flexibility and robustness (1)

3. Alternative to neural networks

(1) [Bonabeau/Meyer, 2001; Şahin, 2004]