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Separate data into similar groups -> Clustering

-> detect meaningful cluster structures defined by a clustering

-> Interested in distance and density-based structures

-> Linear seperable and linear non-seperable structures

Motivation
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Background

 Clusters can be of arbitrary shapes (structures) (1)

 No generally accepted definition of clusters exists in the literature (2)

 Number of clusters difficult to estimate

Implicit assumptions about structures of data are made by

 Clustering criterions (3) 

 Projection methods (besides ESOM and Pswarm of DBS) (5)

 Quality measures (QMs) for projection methods

 My other talk: Investigating Quality Measures of Projections for the 

Evaluation of Distance and Density-based Structures of High-

Dimensional Data

 Quality assessments for clustering methods in the case of unknown 

class labeles (4)
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(1) [Jain/Dubes, 1988]; (2) [Hennig et al., 2015, p. 705]; (3) [Duda et al., 2001; Everitt et al., 2001; 

Handl et al., 2005; Theodoridis/Koutroumbas, 2009; Ultsch/Lötsch, 2016]; (4) [Handl et al., 2005]; 

(5) [Thrun, 2018]
European Conference on Data Analysis (ECDA), Germany, 4th - 6th July, 2018

Introduction → Methods → Results → Conclusion



Challenges of Cluster Analysis

In this talk:

1. How reproducible are the structures a clustering algorithm finds? 

2. Can any cluster algorithm find any structure type in data?

3. How to chose the right parameter settings?

 e.g. Spectral Clustering

 State of the art: test all possible parameter settings (1)

Example in my other Talk: Knowledge discovery from low-frequency 

stream nitrate concentrations: hydrology and biology contributions

4. How can a cluster analysis be performed on a data set of unknown 

structures without prior assumptions?

5. Does the structure defined by a cluster algorithm lead to plausible 

insights?
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(1) [Wiwie et al., 2015]



First step: Benchmarking

 Start with artificial datasets with ground truth

 Define structures priorly using 2D and 3D datasets

-> FCPS provides a good start of datasets (1)

 Should be done unbiased

 Use default settings

 Use an as simple as possible evaluation method

 Experience shows that more elaborate quality measures are often 

biased

=> State of the art: Use all supervised indices available (2)

 Compare many trials per algorithm to each other

 Why not natural and high-dimensional datasets?

 Structures are difficult to know beforehand

 May have more than one clustering solution depending on 

 Domain expert

 Application based
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(1) [Ultsch, 2005], (2) [Wiwie et al., 2015]



Defining Unbiased Quality Measure

1. Calculate 100 trials per clustering method

 For each trial

 The best of all permutation of labels with the highest accuracy is 

selected 

 because algorithms arbitrarily define the labels of a clustering

2. Apply Distribution analysis

 Univariate

 QuantileQuantile plot

 Histogram

 Evaluation of cdf or pdf

 Multivariate

 Methods above are difficult to visualize 

 Box-Whisker diagrams (box plot)

 Violin plots
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
No. of true positives

No. of cases



Why not box plot?

 Visualizes the number of values in a specific range 

 End of the two whiskers are proportional to the interquartile 

range (often 1.5*IQR), (1)

 The box marks 25 and 75% percentile

 Does not indicate multimodality or if median is valid

 Estimates of underlying distribution quantiles based on 

one or two order statistics

 At least nine different approaches for estimation (2)

 Assumption about distribution are made
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(1) [Tukey, 1977]; (2) [Hyndman/Fan, 1996]

]



Why not violin/bean plot (1)?

 Univariate density estimation is trying

 Clear model behind density estimation required

 Emphasis on multimodality

-> Estimation of pdf called “Pareto Density Estimation (PDE), (2)

 Kernel density estimation with variable radius

 Representing the relative likelihood of a given variable taking on 

specific values 

 Slivered in kernels with a specific width

 this width, and therefore the number of kernels, depends on the 

data

 Particularly suitable for the discovery of structures in continuous data

 Allows the discovery of mixtures of Gaussians

-> Pareto density estimation (PDE) is used to improve the 

violin, or the so-called bean plot
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Skewed Distribution

 Data: Peoples income in Germany (1)

 Left: Boxplot

 Middle: Violin plot (2) 

 Right: PDE-optimized violin plot

-> Boxplot and violin plot underestimate skewness of distribution
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Multimodal Distribution

 Data: Income Tax Share of German municipalities (1)

=> Multimodality is given (2), but only PDE-optimized violin plot finds it!
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Distance-Based Structures 
 Hepta: Cluster structures based only on spatial relationships 

between data points leading to 7 spherical Clusters

 Spectral clustering, HCL and k-means have various modes

 Probability states with very varying results
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Linear Separable Structures

 Clusters defined by structures which can be separated by lines

 Dataset Tetra has 4 almost touching cluster of equal variance
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Linear Non-Seperable structures
 Clusters defined by structures which cannot be separate by a line

 Here Chainlink – two intertwined rings

 Most algorithms are unable to untangle such structures, e.g. model based clustering

 Boxplot showed only outliers in DBS but PDE-optimized violin plot shows 6 modes

=> In praxis DBS is never used automatically, it uses the topographic map of 

generalized Umatrix to verify result
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Density-Based Structures

 EngyTime dataset is defined by two 2D Gaussians with varying 

variance

 Only DBS captures structures completely
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Combinations of Different Types of Structures

 For example, Outliers+Distance based structures (Lsun 3D)

 Most algorithms are unable to catch different types of structures in one 

dataset
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Discussion

 27 clustering algorithms compared with default parameter settings

 For density estimation the PDE was used leading to PDE-optimized 

violin plots

 Can outperform violin plots and boxplots

 No Clustering algorithm is always able to reproduce all type of 

structures

 But some will more probable reproduce structures

 e.g. Databionic Swarm (DBS), (1) 

 Often algorithms produce results depending on the trial

 Depends on the dataset

 Do not compare only one trial per algorithm
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Conclusion

 Use artificial datasets to compare clustering results with clearly 

predefined cluster structures

 PDE-optimized violin plot with an unbiased supervised index are a 

good approach to evaluate algorithms

 Available in the R-package DataVisualizations on CRAN

 Are natural high-dimensional dataset useful to serve for 

benchmarking algorithms?

 In our opinion: only if structures are known beforehand and prior 

classification is unambiguous
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Thank you for listening. 

Any questions?
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Feel free to contact me through www.deepbionics.org
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