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Motivation

Separate data into similar groups -> Clustering

-> detect meaningful cluster structures defined by a clustering
-> Interested in distance and density-based structures

-> Linear seperable and linear non-seperable structures
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Background

m Clusters can be of arbitrary shapes (structures) (1)
No generally accepted definition of clusters exists in the literature (2)
Number of clusters difficult to estimate

Implicit assumptions about structures of data are made by
m Clustering criterions (3)

m Projection methods (besides ESOM and Pswarm of DBS) (5)

m  Quality measures (QMs) for projection methods

My other talk: Investigating Quality Measures of Projections for the
Evaluation of Distance and Density-based Structures of High-
Dimensional Data

m Quality assessments for clustering methods in the case of unknown
class labeles (4)

(1) [Jain/Dubes, 1988]; (2) [Hennig et al., 2015, p. 705]; (3) [Duda et al., 2001; Everitt et al., 2001;
Handl et al., 2005; Theodoridis/Koutroumbas, 2009; Ultsch/Lotsch, 2016]; (4) [Handl et al., 2005];
(5) [Thrun, 2018]
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Challenges of Cluster Analysis

In this talk:
1. How reproducible are the structures a clustering algorithm finds?

2. Can any cluster algorithm find any structure type in data?

3. How to chose the right parameter settings?

e.g. Spectral Clustering
m State of the art: test all possible parameter settings (1)

Example in my other Talk: Knowledge discovery from low-frequency
stream nitrate concentrations: hydrology and biology contributions

4. How can a cluster analysis be performed on a data set of unknown
structures without prior assumptions?

5. Does the structure defined by a cluster algorithm lead to plausible
insights?

(1) [Wiwie et al., 2015]
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First step: Benchmarking

m Start with artificial datasets with ground truth
Define structures priorly using 2D and 3D datasets
-> FCPS provides a good start of datasets (1)

m Should be done unbiased
Use default settings
Use an as simple as possible evaluation method

m Experience shows that more elaborate quality measures are often
biased

=> State of the art: Use all supervised indices available (2)
Compare many trials per algorithm to each other
m \Why not natural and high-dimensional datasets?
Structures are difficult to know beforehand
May have more than one clustering solution depending on
s Domain expert
= Application based

(1) [Ultsch, 2005], (2) [Wiwie et al., 2015]
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Defining Unbiased Quality Measure

No. of true positives
No. of cases
1. Calculate 100 trials per clustering method
For each trial

m The best of all permutation of labels with the highest accuracy is
selected

because algorithms arbitrarily define the labels of a clustering
2. Apply Distribution analysis
Univariate

m QuantileQuantile plot
m Histogram

Accuracy =

m Evaluation of cdf or pdf

Multivariate
m Methods above are difficult to visualize
m Box-Whisker diagrams (box plot)

= Violin plots
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Why not box plot?

m Visualizes the number of values in a specific range

End of the two whiskers are proportional to the interquartile
range (often 1.5*I1QR), (1)

The box marks 25 and 75% percentile
m Does not indicate multimodality or if median is valid

m Estimates of underlying distribution quantiles based on
one or two order statistics

m At least nine different approaches for estimation (2)
Assumption about distribution are made

(1) [Tukey, 1977]; (2) [Hyndman/Fan, 1996]
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Why not violin/bean plot (1)?

m Univariate density estimation is trying

m Clear model behind density estimation required
Emphasis on multimodality
-> Estimation of pdf called “Pareto Density Estimation (PDE), (2)

Kernel density estimation with variable radius

m Representing the relative likelihood of a given variable taking on
specific values

m Slivered in kernels with a specific width

this width, and therefore the number of kernels, depends on the
data

Particularly suitable for the discovery of structures in continuous data
m Allows the discovery of mixtures of Gaussians

-> Pareto density estimation (PDE) is used to improve the
violin, or the so-called bean plot

(1) [Hintze/Nelson, 1998]; (2) [Ultsch, 2005b]
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Skewed Distribution

Data: Peoples income in Germany (1)

Left: Boxplot

Middle: Violin plot (2)

Right: PDE-optimized violin plot

-> Boxplot and violin plot underestimate skewness of distribution

_—

Range of Values
Range of Values

10000 20000 30000 40000
1 PDE of Log Income

Log Income Germany

(1) [Thrun/Ultsch, 2015]; (2) [Hintze/Nelson, 1998];
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Multimodal Distribution

m Data: Income Tax Share of German municipalities (1)
=> Multimodality is given (2), but only PDE-optimized violin plot finds it!
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Distance-Based Structures

m Hepta: Cluster structures based only on spatial relationships
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Linear Separable Structures

m Clusters defined by structures which can be separated by lines
Dataset Tetra has 4 almost touching cluster of equal variance
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Linear Non-Seperable structures
m Clusters defined by structures which cannot be separate by a line

Here Chainlink — two intertwined rings
m  Most algorithms are unable to untangle such structures, e.g. model based clustering
Boxplot showed only outliers in DBS but PDE-optimized violin plot shows 6 modes

=> |n praxis DBS is never used automatically, it uses the topographic map of
generalized Umatrix to verify result
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Density-Based Structures

m EngyTime dataset is defined by two 2D Gaussians with varying

variance

m Only DBS captures structures completely
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Combinations of Different Types of Structures

m For example, Outliers+Distance based structures (Lsun 3D)
Most algorithms are unable to catch different types of structures in one

dataset
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Discussion

m 27 clustering algorithms compared with default parameter settings

For density estimation the PDE was used leading to PDE-optimized
violin plots

m Can outperform violin plots and boxplots

m No Clustering algorithm is always able to reproduce all type of
structures

m But some will more probable reproduce structures
e.g. Databionic Swarm (DBS), (1)

m Often algorithms produce results depending on the trial
Depends on the dataset

= Do not compare only one trial per algorithm

(1) [Thrun, 2018]
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Conclusion

m Use artificial datasets to compare clustering results with clearly
predefined cluster structures

m PDE-optimized violin plot with an unbiased supervised index are a
good approach to evaluate algorithms
Available in the R-package DataVisualizations on CRAN

m Are natural high-dimensional dataset useful to serve for
benchmarking algorithms?

In our opinion: only if structures are known beforehand and prior
classification is unambiguous
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Thank you for listening.
Any questions?

Feel free to contact me through www.deepbionics.org
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